Rudolf-Wissell-Str. 28a 37079 Göttingen, Germany Phone: +49 551-50556-0 Fax: +49 551-50556-384 E-mail: sales@sysy.com Web: www.sysy.com ## Mint1 Cat.No. 144-1P; control protein, 100 µg protein (lyophilized) #### **Data Sheet** | Reconstitution/
Storage | 100 μg protein, lyophilized. For reconstitution add 100 μl H ₂ O to get a 1mg/ml solution in TBS. Then aliquot and store at -20°C to -80°C until use. Control proteins should be stored at +4°C when still lyophilized. Do not freeze! For detailed information, see back of the data sheet. | |----------------------------|--| | Immunogen | Recombinant protein corresponding to AA 2 to 265 from rat Mint1 (UniProt Id: O35430) | | Recommended dilution | Optimal concentrations should be determined by the end-user. | | Matching antibodies | 144 103 | | Remarks | This control protein consists of the recombinant protein (aa 2 265 of rat Mint 1) that has been used for immunization. It has been tested in preadsorption experiments and blocks efficiently and specifically the corresponding signal in Western blots. The amount of protein needed for efficient blocking depends on the titer and on the affinity of the antibody to the antigen. | TO BE USED IN VITRO / FOR RESEARCH ONLY NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS #### Background Mints (also referred to as X11-like proteins) are adaptor-proteins that consist of divergent N-terminal sequences and conserved C-terminal PTB and PDZ domains. Three isoforms (Mint 1, 2 and 3) have been described. Mint 1 exclusively binds to the synaptic protein CASK via its N-terminal sequence. Munc18-1 has been shown to be an interaction partner of Mint 1 and 2. The more C-terminal located PTB and PDZ domains present in all Mint isoforms bind to widely distributed proteins like APP, presentiins and Ca2+ channels. A Mint 1 knock out had no obvious effect on brain achitecture and development, nor was synaptic plasticity in excitatory synapses affected. In inhibitory synapses of knock out strains the release of gamma-aminobutyric acid (GABA) was impaired. #### **Selected General References** Mint1, a Munc-18-interacting protein, is expressed in insulin-secreting beta-cells. Zhang W et al. Biochem. Biophys. Res. Commun. (2004) PubMed:15240107 A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. Leonoudakis D et al. J. Biol. Chem. (2004) PubMed:14960569 A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission. Ho A et al. Proc. Natl. Acad. Sci. U.S.A. (2003) PubMed:12547917 Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. Biederer T et al. J. Neurosci. (2002) PubMed:12196555 CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. Tabuchi K et al. J. Neurosci. (2002) PubMed:12040031 Amyloid precursor protein associates independently and collaboratively with PTB and PDZ domains of mint on vesicles and at cell membrane. Okamoto M et al. Neuroscience (2001) PubMed:11440799 Modulation of amyloid precursor protein metabolism by X11alpha /Mint-1. A deletion analysis of protein-protein interaction domains. Mueller HT et al. J. Biol. Chem. (2000) PubMed:11010978 Access the online factsheet including applicable protocols at https://sysy.com/product/144-1P or scan the QR-code. # FAQ - How should I store my antibody? ### **Shipping Conditions** All our antibodies and control proteins / peptides are shipped lyophilized (vacuum freezedried) and are stable in this form without loss of quality at ambient temperatures for several weeks. #### Storage of Sealed Vials after Delivery - Unlabeled and biotin-labeled antibodies and control proteins should be stored at 4°C before reconstitution. They must not be stored in the freezer when still lyophilized! Temperatures below zero may cause loss of performance. - Fluorescence-labeled antibodies should be reconstituted immediately upon receipt. Long term storage (several months) may lead to aggregation. - **Control peptides** should be kept at -20°C before reconstitution. # Long Term Storage after Reconstitution (General Considerations) - The storage freezer must not be of the frost-free variety ("no-frost freezer"). This cycle between freezing and thawing (to reduce frost-build-up), which is exactly what should be avoided. For the same reason, antibody vials should be placed in an area of the freezer that has minimal temperature fluctuations, for instance towards the back rather than on a door shelf. - Aliquot the antibody and store frozen (-20°C to -80°C). Avoid very small aliquots (below 20 µl) and use the smallest storage vial or tube possible. The smaller the aliquot, the more the stock concentration is affected by evaporation and adsorption of the antibody to the surface of the storage vial or tube. Adsorption of the antibody to the surface leads to a substantial loss of activity. - The addition of glycerol to a final concentration of 50% lowers the freezing point of your stock and keeps your antibody at -20°C in liquid state. This efficiently avoids freeze and thaw cycles. #### **Product Specific Hints for Storage** #### Control proteins / peptides • Store at -20°C to -80°C. #### **Monoclonal Antibodies** - Ascites and hybridoma supernatant should be stored at -20°C up to -80°C. Prolonged storage at 4°C is not recommended! Unlike serum, ascites may contain proteases that will degrade the antibodies. - **Purified IgG** should be stored at -20°C up to -80°C. Adding a carrier protein like BSA will increase long term stability. Many of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information. #### **Polyclonal Antibodies** - Crude antisera: With anti-microbials added, they may be stored at 4°C. However, frozen storage (-20°C up to -80°C) is preferable. - Affinity purified antibodies: Less robust than antisera. Storage at -20°C up to -80°C is recommended. Adding a carrier protein like BSA will increase long term stability. Most of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information. #### Fluorescence-labeled Antibodies • Store as a liquid with 1:1 (v/v) glycerol at -20°C. Protect these antibodies from light exposure. # Avoid repeated freeze-thaw cycles for all antibodies! # FAQ - How should I reconstitute my antibody? #### Reconstitution - All our purified antibodies are lyophilized from PBS. To reconstitute the antibody in PBS, add the amount of deionized water given in the respective datasheet. If higher volumes are preferred, add water as mentioned above and then the desired amount of PBS and a stabilizing carrier protein (e.g. BSA) to a final concentration of 2%. Some of our antibodies already contain albumin. Take this into account when adding more carrier protein. For complete reconstitution, carefully remove the lid. After adding water, briefly vortex the solution. You can spin down the liquid by placing the vial into a 50 ml centrifugation tube filled with paper. - If desired, add small amounts of azide or thimerosal to prevent microbial growth. This is especially recommended if you want to keep an aliquot a 4°C. - After reconstitution of fluorescence-labeled antibodies, add 1:1 (v/v) glycerol to a final concentration of 50%. This lowers the freezing point of your stock and keeps your antibody in liquid state at -20°C. - Glycerol may also be added to unlabeled primary antibodies. It is a suitable way to avoid freezethaw cycles. - Please refer to our tips and hints for subsequent storage of reconstituted antibodies and control peptides and proteins.