Tailor-made Antibodies
and Tools for Life Science
Home | | | | | Technical Support

Synapsin1 antibody - 106 104 K.O.

Synapsins are peripheral synaptic vesicle proteins and substrate for several protein kinases
Guinea pig polyclonal antiserum
Cat. No.: 106 104
Amount: 100 µl
Price: $375.00
Cat. No. 106 104 100 µl antiserum, lyophilized. For reconstitution add 100 µl H2O, then aliquot and store at -20°C until use.
Antibodies should be stored at +4°C when still lyophilized. Do not freeze!
Applications
 
WB: 1 : 1000 (AP staining) gallery  
IP: not tested yet
ICC: 1 : 500 up to 1 : 1000 gallery  
IHC: 1 : 500 up to 1 : 1000      gallery  
IHC-P: 1 : 500 gallery  
EM: external data (see remarks)

Western blot (WB); separation of proteins by PAGE and subsequent transfer to a membrane. Detection of target molecules is carried out with antibodies. Some antibodies require special sample preparation steps. For details, please refer to the “Remarks” section.

Immunoprecipitation (IP); Immunoisolation or pulldown of a target molecule using an antibody. For details and product specific hints, please refer to the ”Remarks” section.

Immunocytochemistry (ICC) on 4% PFA fixed cells. Immunoreactivity is usually revealed by fluorescence. Some antibodies require special fixation methods. For details, please refer to the “Remarks” section.

Immunohistochemistry (IHC) on 4% PFA perfusion fixed tissue with 24h PFA post fixation. Immunoreactivity is usually revealed by fluorescence or a chromogenic substrate. Some antibodies require special fixation methods or antigen retrieval steps. For details, please refer to the ”Remarks” section.

Immunohistochemistry (IHC-P) of formalin fixed, paraffin embedded (FFPE) tissue (some antibodies require special antigen retrieval steps, please refer to the ”Remarks” section). Immunoreactivity is usually revealed by fluorescence or a chromogenic substrate.

Electron microscopy (EM) is a microscopy technique that detects the scatter of electrons through thin tissue sections. In Immuno-EM the antigen is usually revealed by colloidal gold conjugated secondary antibodies linking electron dense structures to antigen-bound primary antibodies.

Immunogen Synthetic peptide corresponding to AA 445 to 462 from mouse Synapsin1 (UniProt Id: O88935)
Reactivity Reacts with: mouse (O88935), rat (P09951).
Other species not tested yet.
Specificity Specific for synapsins 1a and 1b, no cross-reactivity to synapsin 2a/b. K.O. validated
Matching control protein/peptide 106-1P
Remarks

EM: This antibody has been successfully used and published for this application by customers (see “application” references).

Data sheet 106_104.pdf

References for Synapsin1 - 106 104

Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism.
Arias-Aragón F, Robles-Lanuza E, Sánchez-Gómez Á, Martinez-Mir A, Scholl FG
Molecular brain (2025) 181: 20. 106 104 WB, ICC; tested species: human,rat
Protocol for CRISPR-based manipulation and visualization of endogenous α-synuclein in cultured mouse hippocampal neurons.
Parra-Rivas LA, Sharma R, Rust TE, Bazick HO, Carlson-Stevermer J, Zylka MJ, Ogawa Y, Roy S
STAR protocols (2025) 63: 103945. 106 104 WB; tested species: mouse
Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function.
Parra-Rivas LA, Madhivanan K, Aulston BD, Wang L, Prakashchand DD, Boyer NP, Saia-Cereda VM, Branes-Guerrero K, Pizzo DP, Bagchi P, Sundar VS, et al.
Neuron (2023) 11124: 4006-4023.e10. 106 104 WB; tested species: mouse
Rho-kinase inhibition by fasudil modulates pre-synaptic vesicle dynamics.
Saal KA, Warth Pérez Arias C, Roser AE, Christoph Koch J, Bähr M, Rizzoli SO, Lingor P
Journal of neurochemistry (2020) : . 106 104 WB; tested species: rat
Forebrain assembloids support the development of fast-spiking human PVALB+ cortical interneurons and uncover schizophrenia-associated defects.
Walsh RM, Crabtree GW, Kalpana K, Jubierre L, Koo SY, Ciceri G, Gogos JA, Kruglikov I, Studer L
Neuron (2025) : . 106 104 ICC; tested species: human
Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism.
Arias-Aragón F, Robles-Lanuza E, Sánchez-Gómez Á, Martinez-Mir A, Scholl FG
Molecular brain (2025) 181: 20. 106 104 WB, ICC; tested species: human,rat
Rasopathy-Associated Mutation Ptpn11D61Y has Age-Dependent Effect on Synaptic Vesicle Recycling.
Guhathakurta D, Selzam F, Petrušková A, Weiss EM, Akdaş EY, Montenegro-Venegas C, Zenker M, Fejtová A
Cellular and molecular neurobiology (2024) 441: 77. 106 104 ICC; tested species: mouse
Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and cAMP.
Montenegro-Venegas C, Guhathakurta D, Pina-Fernandez E, Andres-Alonso M, Plattner F, Gundelfinger ED, Fejtova A
EMBO reports (2022) 238: e53659. 106 104 ICC; tested species: mouse
Action potential-coupled Rho GTPase signaling drives presynaptic plasticity.
O'Neil SD, Rácz B, Brown WE, Gao Y, Soderblom EJ, Yasuda R, Soderling SH
eLife (2021) 10: . 106 104 ICC; tested species: mouse
Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease.
Gonzales J, Le Berre-Scoul C, Dariel A, Bréhéret P, Neunlist M, Boudin H
Scientific reports (2020) 101: 15119. 106 104 ICC; tested species: rat
Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering.
Gao Y, Hisey E, Bradshaw TWA, Erata E, Brown WE, Courtland JL, Uezu A, Xiang Y, Diao Y, Soderling SH
Neuron (2019) : . 106 104 ICC; tested species: mouse
Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice.
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, et al.
Nature communications (2023) 141: 5749. 106 104 IHC; tested species: mouse
FMRP phosphorylation modulates neuronal translation through YTHDF1.
Zou Z, Wei J, Chen Y, Kang Y, Shi H, Yang F, Shi Z, Chen S, Zhou Y, Sepich-Poore C, Zhuang X, et al.
Molecular cell (2023) 8323: 4304-4317.e8. 106 104 IHC; tested species: human
An adult-stage transcriptional program for survival of serotonergic connectivity.
Kitt MM, Tabuchi N, Spencer WC, Robinson HL, Zhang XL, Eastman BA, Lobur KJ, Silver J, Mei L, Deneris ES
Cell reports (2022) 393: 110711. 106 104 IHC; tested species: mouse
Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system.
Bregin A, Kaare M, Jagomäe T, Karis K, Singh K, Laugus K, Innos J, Leidmaa E, Heinla I, Visnapuu T, Oja EM, et al.
Pharmacology, biochemistry, and behavior (2020) 198: 173017. 106 104 IHC; tested species: mouse
Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing.
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F
eLife (2019) 8: . 106 104 IHC, EM; tested species: mouse
Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses.
Klotz L, Wendler O, Frischknecht R, Shigemoto R, Schulze H, Enz R
FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2019) : fj201901543R. 106 104 IHC; tested species: mouse
Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing.
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F
eLife (2019) 8: . 106 104 IHC, EM; tested species: mouse
Cat. No.: 106 104
Amount: 100 µl
Price: $375.00
Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism.
Arias-Aragón F, Robles-Lanuza E, Sánchez-Gómez Á, Martinez-Mir A, Scholl FG
Molecular brain (2025) 181: 20. 106 104 WB, ICC; tested species: human,rat
Protocol for CRISPR-based manipulation and visualization of endogenous α-synuclein in cultured mouse hippocampal neurons.
Parra-Rivas LA, Sharma R, Rust TE, Bazick HO, Carlson-Stevermer J, Zylka MJ, Ogawa Y, Roy S
STAR protocols (2025) 63: 103945. 106 104 WB; tested species: mouse
Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function.
Parra-Rivas LA, Madhivanan K, Aulston BD, Wang L, Prakashchand DD, Boyer NP, Saia-Cereda VM, Branes-Guerrero K, Pizzo DP, Bagchi P, Sundar VS, et al.
Neuron (2023) 11124: 4006-4023.e10. 106 104 WB; tested species: mouse
Rho-kinase inhibition by fasudil modulates pre-synaptic vesicle dynamics.
Saal KA, Warth Pérez Arias C, Roser AE, Christoph Koch J, Bähr M, Rizzoli SO, Lingor P
Journal of neurochemistry (2020) : . 106 104 WB; tested species: rat
Forebrain assembloids support the development of fast-spiking human PVALB+ cortical interneurons and uncover schizophrenia-associated defects.
Walsh RM, Crabtree GW, Kalpana K, Jubierre L, Koo SY, Ciceri G, Gogos JA, Kruglikov I, Studer L
Neuron (2025) : . 106 104 ICC; tested species: human
Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism.
Arias-Aragón F, Robles-Lanuza E, Sánchez-Gómez Á, Martinez-Mir A, Scholl FG
Molecular brain (2025) 181: 20. 106 104 WB, ICC; tested species: human,rat
Rasopathy-Associated Mutation Ptpn11D61Y has Age-Dependent Effect on Synaptic Vesicle Recycling.
Guhathakurta D, Selzam F, Petrušková A, Weiss EM, Akdaş EY, Montenegro-Venegas C, Zenker M, Fejtová A
Cellular and molecular neurobiology (2024) 441: 77. 106 104 ICC; tested species: mouse
Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and cAMP.
Montenegro-Venegas C, Guhathakurta D, Pina-Fernandez E, Andres-Alonso M, Plattner F, Gundelfinger ED, Fejtova A
EMBO reports (2022) 238: e53659. 106 104 ICC; tested species: mouse
Action potential-coupled Rho GTPase signaling drives presynaptic plasticity.
O'Neil SD, Rácz B, Brown WE, Gao Y, Soderblom EJ, Yasuda R, Soderling SH
eLife (2021) 10: . 106 104 ICC; tested species: mouse
Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease.
Gonzales J, Le Berre-Scoul C, Dariel A, Bréhéret P, Neunlist M, Boudin H
Scientific reports (2020) 101: 15119. 106 104 ICC; tested species: rat
Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering.
Gao Y, Hisey E, Bradshaw TWA, Erata E, Brown WE, Courtland JL, Uezu A, Xiang Y, Diao Y, Soderling SH
Neuron (2019) : . 106 104 ICC; tested species: mouse
Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice.
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, et al.
Nature communications (2023) 141: 5749. 106 104 IHC; tested species: mouse
FMRP phosphorylation modulates neuronal translation through YTHDF1.
Zou Z, Wei J, Chen Y, Kang Y, Shi H, Yang F, Shi Z, Chen S, Zhou Y, Sepich-Poore C, Zhuang X, et al.
Molecular cell (2023) 8323: 4304-4317.e8. 106 104 IHC; tested species: human
An adult-stage transcriptional program for survival of serotonergic connectivity.
Kitt MM, Tabuchi N, Spencer WC, Robinson HL, Zhang XL, Eastman BA, Lobur KJ, Silver J, Mei L, Deneris ES
Cell reports (2022) 393: 110711. 106 104 IHC; tested species: mouse
Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system.
Bregin A, Kaare M, Jagomäe T, Karis K, Singh K, Laugus K, Innos J, Leidmaa E, Heinla I, Visnapuu T, Oja EM, et al.
Pharmacology, biochemistry, and behavior (2020) 198: 173017. 106 104 IHC; tested species: mouse
Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing.
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F
eLife (2019) 8: . 106 104 IHC, EM; tested species: mouse
Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses.
Klotz L, Wendler O, Frischknecht R, Shigemoto R, Schulze H, Enz R
FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2019) : fj201901543R. 106 104 IHC; tested species: mouse
Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing.
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F
eLife (2019) 8: . 106 104 IHC, EM; tested species: mouse
Background

Synapsins are neuron-specific phosphoproteins that play a fundamental role in synaptic vesicle trafficking and neurotransmitter release. They are exclusively associated with small synaptic vesicles in presynaptic terminals, with little or no expression in non-neuronal tissues including neuroendocrine cells (1–4). In mammals, three distinct genes—SYN1, SYN2, and SYN3—encode more than eight isoforms through alternative splicing. Synapsin1 is one of the most specific markers of synapses throughout both the central and peripheral nervous systems. In addition to presynaptic terminals, it is localized to sensory nerve endings and peripheral innervation of the gastrointestinal tract, including the small intestine, where it contributes to neurotransmitter release in enteric and extrinsic nerves (2,3). Two splice variants, synapsin1a and synapsin1b, interact with synaptic vesicle membranes and the cytoskeletal proteins actin and spectrin (1). Synapsin2, also expressed in the nervous system, exists in at least two splice variants, whereas synapsin3 displays a more restricted distribution, being enriched in hippocampal neurons and developing neural circuits (4).
Synapsins are major neuronal phosphoproteins and substrates of several kinases, including PKA, CaMK I, and CaMK II, with synapsin1 serving as a reference substrate for calmodulin-dependent protein kinases (1,4). Beyond their established neuronal role, recent studies have implicated synapsins in glioblastoma biology. In particular, synapsin3 has been shown to promote neuronal-like differentiation of glioblastoma stem cells by antagonizing Notch signaling, thereby reducing tumor stemness and progression (5). Moreover, glioblastoma cells can exploit synaptic communication pathways, underscoring a broader role for synaptic proteins in tumor growth and plasticity (6).